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Sur s/n, C.P. 29290, San Cristóbal de las Casas, Chiapas, Mexico

§Departamento de Geografı́a, Universidad de Alcalá, C.P. 28801Alcalá de Henares,
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The landscape of the Highlands of Chiapas, southern Mexico, is covered by a

highly complex mosaic of anthropogenic, natural and semi-natural vegetation.

This complexity challenges land cover classification based on remotely sensed

data alone. Spectral signatures do not always provide the basis for an

unambiguous separation of pixels into classes. Expert knowledge does, however,

provide additional lines of evidence that can be employed to modify the belief

that a pixel belongs to a certain coverage class. We used Dempster–Shafer (DS)

weight of evidence modelling to incorporate this information into the

classification process in a formal manner. Expert knowledge-based variables

were related to: (1) altitude, (2) slope, (3) distance to known human settlements

and (4) landscape perceptions regarding dominance of vegetation types. The

results showed an improvement of classification results compared with

traditional classifiers (maximum likelihood) and context operators (modal

filters), leading to better discrimination between categories and (i) a decrease in

errors of omission and commission for almost all classes and (ii) a decrease in

total error of around 7.5%. The DS approach led not only to a more accurate

classification but also to a richer description of the inherent uncertainty

surrounding it.

1. Introduction

Complex mosaic landscapes in which heterogeneity is apparent at a very fine grained

level of resolution are frequent in many tropical regions around the world

(Imbernon and Branthomme 2001, Pedroni 2003). Two major determinants of this

complexity are land use and abrupt topography. Land use frequently includes

timber extraction, slash and burn agriculture, fuel wood production and cattle

ranching, all of which are associated with fragmentation of natural forests and the

initiation of complex succesional stages of vegetation development (Meyer and

Turner II 1992, Imbernon 1999a, b, Imbernon and Branthomme 2001, Ramı́rez-

Marcial et al. 2001). Additionally, population growth and the social structure of
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communities lead to the division of land into extremely small units, often less than

1 ha in extent (Ochoa-Gaona 2001).

Remotely sensed information is an important tool for documenting and

understanding the resulting patterns of land cover. However, landscape complexity

poses particular challenges for image classification. There is an inevitably high

degree of misclassification, particularly if various categories are interspersed within

a small spatial area (Foody 2002b) or some of the land cover categories have

overlapping spectral signatures (Pedroni 2003). In such circumstances, subjective

image interpretation or time-consuming photo-interpretation (Dirzo and Garcı́a

1992, Turner et al. 1996, Ochoa-Gaona and González-Espinosa 2000, Peralta and

Mather 2000) has traditionally been preferred to automated supervised or

unsupervised image classification. This has several drawbacks. It takes time to

classify images manually, and skilled interpreters may not always be available.

Furthermore such classification is inevitably subjective, making independent

replication and verification of the results extremely difficult. Context operators

have also been used to improve classification by removing errors caused by signal

noise (Booth and Oldfield 1989). However, in heterogeneous landscapes they can

smooth out genuine landscape features.

In attempting to solve the problem of misclassification in fine-grained complex

landscapes, soft classifiers have become increasingly popular (Foody 1996, 2002a, Ji

2003). In addition, some researchers have investigated the possibility of including

environmental data in the classification process, often through prior probabilities

(Mather 1985, Cibula and Nyquist 1987, Frigessi and Stander 1994, Maselli et al.

1995, McIver and Friedl 2002, Pedroni 2003). We investigated a method for the

classification of land cover by the fusion of multi-spectral data and expert

knowledge based on Dempster–Shafer (DS) theory of evidence. The DS approach

has the advantage of integrating different pieces of information through formal

probabilistic reasoning in a well-documented manner. We applied this method to a

case study, the Highlands of Chiapas, Mexico. Our study asked whether the

inclusion of field-knowledge-based lines of evidence could improve classification

accuracy at least as much as noise reduction through context-based filtering.

2. Material and methods

2.1 The study area

The Highlands of Chiapas extend over 11 000 km2 (figure 1). They form a

biologically diverse region which includes 30% of the approximately 9000 vascular

plant species of the flora of Chiapas (Breedlove 1981). Several forest formations are

found in the Highlands, including oak, pine – oak, pine – oak – liquidambar, pine,

and evergreen cloud forests (Miranda 1952, Rzedowski 1988, González-Espinosa et

al. 1991). The region is densely populated by Mayan peasants who have cleared

forest both permanently and temporarily for shifting cultivation and used firewood

and other forest resources since pre-Columbian times (Cowgill 1962, Collier 1975).

Our study area was the San Cristóbal de las Casas watershed, located in the

central Highlands of Chiapas (figure 1). The area covers around 542 km2 and

extends mainly over the municipalities of San Cristóbal de las Casas and Chamula.

Maximum temperatures are between 16 and 22uC. Minimum temperatures can fall

below freezing. Rainfall is between 800 and 1200 mm with moist summers and dry

winters. Elevations range from 1600 to 2900 m.a.s.l. The underlying geology of the
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area is carboniferous limestone with many rocky outcroppings. San Cristóbal and

Chamula are two of the most populated districts of the Highlands. Most of the

rural population belong to the Maya Tzotzil ethnic group. The main economic

activities are agriculture and forestry, with oak forest coppicing being a common

management practice.

2.2 Preliminary data processing

A subset from a Landsat ETM + (Enhanced Thematic Mapper) image (path 21 row

48, taken on 3 April 2000) was used in this study. Geometrical corrections were

performed using control points from a digital 1 : 50 000 roadway map (LAIGE 2000)

with a second-order polynomial algorithm (root mean square error: x-axis50.53

pixels; y-axis50.52 pixels). Removal of atmospheric effects and variations in solar

irradiance were achieved using an algorithm based on the Chavez reflectivity model

(Chavez 1996). Digital numbers were then transformed to reflectivity values. Effects

Figure 1. (a) The state of Chiapas, southern Mexico, and northern Central America. (b)
Geographical allocation of the highlands of Chiapas and the central Highlands within the
state. (c) Characteristics of the study area: municipalities, rivers, principal towns and
topographical features.
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on shaded slopes were accounted for by performing topographic corrections using a

C model (Teillet et al. 1982), which is recommended for high solar angles as was the

case for our image (solar angle558.82u). Most of the processing work was

performed using PCI 7.0 software package (PCI 2001).

2.3 Identification of land cover categories

Classification categories were defined following Miranda (1952), Breedlove (1981),

González-Espinosa et al. (1997), Ochoa-Gaona and González-Espinosa (2000) and

Ochoa-Gaona (2001). We distinguished the following categories: (i) non-classified

(NA), (ii) cloud forest (CF), (iii) oak forest (OF), (iv) pine–oak forest (POF), (v)

pine forest (PF), (vi) developed areas (DA) and (vii) agriculture and pasturelands

(AP). As we will make constant references to these abbreviations throughout the

text we advise the reader to refer to table 1 when necessary. Water bodies were not

included as a separate class as there were no large rivers, dams or ponds within the

study area. Most small water bodies were dry at the time the satellite image was

taken.

2.4 The Dempster – Shafer classification procedure

The DS theory of evidence is a generalization of the Bayesian theory of subjective

probability which allows for combination of different independent lines of evidence

derived from various sources in order to obtain degrees of belief for different

hypotheses (Kontoes et al. 1993, Mertikas and Zervakis 2001). It is based on

Dempster – Shafer’s rule for combining degrees of belief (Shafer 1982). The

procedure constructs and stores the current state of knowledge for the full hierarchy

of hypotheses. For example, for three hypotheses {CF, OF, POF}, the possible

combinations are [CF], [OF], [POF], [CF, OF], [CF, POF], [OF, POF], [CF, OF,

POF]. This allows evidence to be incorporated in favour of occurrence of compound

hypotheses when knowledge is not sufficient to discriminate between single

hypotheses. It is a potentially powerful approach for aggregating indirect evidence

and incomplete information into the classification process. Detailed applications to

remote sensing may be found in Srinivasan and Richards (1990), Kontoes et al.

(1993) and Mertikas and Zervakis (2001).

In our study, the DS classification procedure was implemented by combining

different probability images from the evidence derived from both multi-spectral data

and expert knowledge-based lines of evidence (table 2). After combining all evidence

by means of the DS algorithm, results were obtained in the form of layers that

defined the degree of belief or probability of each pixel belonging to each of the

Table 1. Classification categories and their corresponding abbreviations used throughout the
text.

Abbreviation Class

CF Cloud forest
OF Oak forest
POF Pine-oak forest
PF Pine forest
DA Developed areas
AP Agriculture and pasturelands
NC Non-classified
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hypotheses or classification categories (figure 2). A land cover classification map was

then obtained by assigning each pixel to the category that was the most probable

after the spectral and ancillary information had been combined. Additionally, a

layer containing the classification uncertainty was produced.

Multi-spectral data were incorporated into the analysis in the form of Bayesian

probabilities based on the variance/covariance matrix derived from training sites

(table 2). Informative prior probabilities were not used at this stage as we

incorporated the additional information during the subsequent stage of our

classification procedure. The probabilities were therefore based on the likelihoods.

Training sites were created by on-screen digitizing polygons from control points

taken in the field using as pure a sample of the information class as possible.

Training sites were selected to account for at least 10 times as many pixels for each

training class as bands were used in the image classification. Spectral signatures for

each training class were then extracted using information on bands 1, 2, 3, 4, 5 and

7. Bayes classification procedure outputs a separate image for each considered class

containing the probability of each pixel of belonging to that class (figure 2). In

essence, Bayes is a confident classifier. Lack of evidence for an alternative

hypothesis constitutes support for the hypotheses that remain. Thus, a pixel for

which reflectance data only very weakly support a particular class is treated as

belonging to that class if no support exists for any other interpretation.

In addition to multi-spectral information, probability images were derived from

expert knowledge-based evidences and included in the classification process in

support of singleton or compound hypotheses (table 2). Expert knowledge

represented the formalized opinion of local scientists with regard to the occurrence

Table 2. Lines of evidence in support of different single or compound hypotheses used in the
DS classification procedure.

Source Line of evidence Supported hypothesis Function type
Probability

range

Satellite
imagery

Bayes probabilities
based on spectral
signatures
extracted from
bands 1, 2, 3,
4, 5 and 7

[CF] Variance/
covariance
matrix

0.0 –1.0
[OF] 0.0 –1.0
[POF] 0.0 –1.0
[PF] 0.0 –1.0
[DA] 0.0 –1.0
[AP] 0.0 –1.0

Expert
knowledge

Elevation [OF, POF, PF, DA, AP] Linear 0.0 –0.8
Slope [CF, OF, POF] Linear 0.0 –0.8

[PF, DA, AP] Linear 0.0 –0.8
Distance to human

settlements
[DA] Distance-based 0.0 –0.8

Landscape
perception

regarding
dominance of
vegetation
types

[OF, CF, DA, AP] Fixed probability 0.0/0.6
[POF, CF, DA, AP] Fixed probability 0.0/0.6
[PF, DA, AP] Fixed probability 0.0/0.6

CF, cloud forest; OF, oak forest; POF, pine – oak forest; PF, pine forest; DA, developed area;
AP, agriculture and pastureland.
Function type refers to the manner in which the knowledge regarding a certain hypothesis was
shaped. Note that maximum probability for evidence derived from expert knowledge was set
at 0.8 and 0.6, thus leaving sufficient room for uncertainty regarding these hypotheses.
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of different land covers according to various characteristics of the landscape such as

altitude or slope. The lines of evidence used were based on: (i) altitude, (ii) slope, (iii)

proximity to human settlements and (iv) landscape perceptions regarding

dominance of vegetation types through Thiessen’s polygons.

(i) Altitude indirectly referred to the hypothesis cloud forest [CF]. CF in the
central Highlands of Chiapas is known to occur at humid crests mostly above

2400 m (González-Espinosa et al. 1997). As altitude is a necessary but not

sufficient condition for occurrence of CF, this evidence only supports

negation of the primary hypothesis of concern. Current evidence therefore

relates to occurrence of the compound hypothesis [OF, POF, PF, DA, AP]

below 2400 m.a.s.l. This knowledge was incorporated using a linear function

(figure 3(a)) where the probability for occurrence of any hypothesis but CF

decreases with altitude above 2400 m.a.s.l.

(ii) Slope was used in support of two groups of hypotheses. On steep slopes a

higher probability of occurrence for hypotheses [CF, OF, POF] was assumed

(figure 3(b)). On the contrary, gentle slopes supported the hypotheses [PF,
DA, AP] (figure 3(c)). Inclusion of PF in the latter group is due to the fact

that most PF in the study area are plantations and have typically been

established on gentle slopes near valley bottoms.

(iii) Proximity to known human settlements referred to the single hypothesis
[DA]. This information was derived from a map of localities containing data

from population censuses (INEGI 1995). As the map did not specify the size

Figure 2. Dempster – Shafer classification allows the combining of different lines of evidence
derived from satellite imagery and expert knowledge to produce a set of layers (belief surfaces)
that define the probability of each pixel belonging to each of the classification categories. In
addition, a layer showing the uncertainty associated with the classification process is
generated.
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of the settlements, only the geographical position of the settlement centre, a

map representing the effect of settlement size was derived based on a function

inferred from population data. As human settlements are easily discernible in

satellite images, an empirical relationship was produced that related average

distance from settlement centre to population number, according to the

following equation:

y~9:245 x0:521
� �

Figure 3. By means of linear functions, field knowledge is converted into probability layers.
These relate: (a) lower altitudes to presence of any class but cloud forest [OF, POF, PF, DA,
PA]; (b) increasingly steeper slopes to presence of forest classes [CF, OF, POF]; and (c) lower
slopes to presence of non-forest areas and pine forests [PF, DA, PA]. CF, cloud forest; OF,
oak forest; POF, pine – oak forest; PF, pine forest; DA, developed areas; AP, agriculture/
pastureland.
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where y is the average distance from settlement centre and x is the number of

inhabitants. This approach was thought to be more accurate than a simple

distance measure as it incorporates an estimation of the settlement size as

a function of its population. The area close to settlements was given a

probability of 0.8 for the hypothesis [DA] leaving the remaining area with a

probability value of 0 (i.e. complete uncertainty for the considered

hypothesis).

(iv) Landscape perceptions regarding dominance of vegetation types were

introduced into the analysis by means of Thiessen’s polygons. Thiessen’s

polygons divide space in such a way that each pixel is assigned to the nearest

control point defining regions which are dominated by each point (Eastman

2001). Seventy control points were recorded on the field according to expert-

knowledge-based perceptions of dominant vegetation types. Main hypoth-

eses were referred to OF, POF and PF. Since DA and AP do not apparently

follow any pattern of appearance within the study area, these categories were

not considered separately but in combination with different vegetation types.

CF was ascribed to similar probabilities of occurrence as OF and POF. Thus,

landscape perceptions supported three groups of compound hypotheses: (a)

[OF, CF, DA, AP], (b) [POF, CF, DA, AP] and (c) [PF, DA, AP].

Probability in support of the different hypotheses within the polygons was set

to 0.6. This left more room for uncertainty than for all the other lines of

evidence, where maximum probability of occurrence for a certain hypothesis

or group of hypotheses was set to 0.8.

Different combinations of lines of evidence derived from expert knowledge were

used to check their separate effect in reducing classification error. These results were

then compared with those obtained with a maximum likelihood classifier based only

on spectral information, with and without the use of a 363 modal filter. In addition,

maximum likelihood classifications were performed using multi-spectral informa-

tion plus: (i) digital elevation model (DEM) data, (ii) slope and (iii) both DEM and

slope. This approach basically differed from the DS procedure in that the

characteristics of each classification category regarding the ancillary data were

automatically selected from the training sites (as with the multi-spectral data) and

not based on expert knowledge. Finally, surface estimations were calculated for each

individual class under the three main procedures. All these procedures were

implemented using Idrisi32 (Eastman 2001).

2.5 Accuracy assessment

The final stage of the classification process involved an accuracy assessment.

Traditionally this is done by generating a random set of locations to visit on the

ground for verification of the true land cover types (Foody 2002b). However, land

tenure and accessibility within the study area make this process difficult. One

hundred and thirty-six verification points were collected on the ground (geo-

referenced with a Garmin GPS III Plus) through pre-defined transects along

principal and secondary roadways. A minimum of 10 points was recorded for each

class. Criteria used in the selection of verification points were independency and

representativity. For CF it was not possible to find completely independent points

due to the low proportion of land surface covered by this class (19 points taken in

three different forest stands). Another criterion applied was that the areas where
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points were taken had an extent of at least 90690 m and were located at least 30 m

from the border. This was done to avoid positional errors in geo-referencing control

points (Foody 2002b). A confusion matrix was then generated and three kinds of

errors were calculated: (i) error of omission for each category, which indicates how

well the training points were classified; (ii) error of commission for each category,

indicating the probability that a classified pixel actually represents that category in

reality; and (iii) overall error with confidence intervals. In addition, producer’s,

user’s and overall accuracy with 95% confidence intervals were calculated as the

complementary of the omission, commission and overall errors, respectively. A

kappa index of agreement (KIA) with 95% confidence intervals was used to estimate

consistency of classification accuracy (Rosenfield and Fitzpatric-Lins 1986). KIA

represents the proportion of agreement obtained after removing the proportion of

agreement that could be expected to occur by chance. Thus, the lower the difference

with accuracy values the lower the proportion of pixels correctly classified by

chance. Finally, estimated errors and accuracies were compared between DS,

maximum likelihood and filtered maximum likelihood classifications.

3. Results

3.1 Classification accuracies

Confusion matrixes for maximum likelihood classification with and without the use

of context operators and DS classification are shown in table 3. The addition of

expert knowledge reduces overall error from 33.1% to 25.7% (figure 4). The KIA

follows quite closely the overall accuracy results, with an increase in accuracy from

59.8% for maximum likelihood (95% confidence intervals [50.4–69.3]) to 68.6% for

DS (95% confidence intervals [59.7–77.6]). The use of a 363 modal filter on the

maximum likelihood classification increases overall error up to 39.7% (figure 4).

In addition to overall classification accuracies, we examined the classification

performance of each of the classifiers with respect to individual classes. There was

an improvement in accuracy in almost all individual classes when the DS classifier is

compared with maximum likelihood (table 3, figure 4). For the non-forest classes,

there was a slightly decrease in user’s accuracy for DA and AP and in producer’s

accuracy for AP. As for all the forest classes, both user’s and producer’s accuracies

were improved when combining expert knowledge with remote sensing data through

the DS theory of evidence. Accuracy was greatly improved for some classes, such as

POF and PF, whereas for others, such as CF and OF, improvement was lower than

10%. Modal filtered maximum likelihood classification, on the other hand,

decreased user’s and producer’s accuracy for almost all individual classes except

for PF, DA and AP.

The upper section of table 4 shows the errors derived from maximum likelihood

classification when adding DEM and/or slope data to multi-spectral information.

This approach is typically used in remote sensing and we thus included it for

comparative purposes. The inclusion of the DEM data increased overall error for

most of the forest classes. There were two exceptions to this trend. First, the error of

commission was greatly reduced for CF. This was because training sites for CF were

mainly at high altitude and thus the inclusion of DEM data reduced the extent of

this category and few pixels were misclassified through commission to this class.

Second, the error of omission for PF was also considerably reduced. This can be

explained using the opposite argument. PF training sites were recorded along a
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broad altitudinal range. Thus including DEM data led to an increase in PF extent

and a consequent reduction in the error of omission. With regard to slope, overall

error is somewhat reduced. However, errors for most forest classes increased with

the exception of the error of commission for CF. The explanation for this

Table 3. Confusion matrix for (a) maximum likelihood (ML) classifier, (b) ML classifier with
363 modal filter and (c) DS classifier using remote sensing in combination with expert

knowledge.

Verification points User’s
accuracy

(%)

Error of
commission

(%)CF OF POF PF DA AP Total

(a) Maximum likelihood classified land cover
NC 0 0 1 0 2 1 4 100.0
CF 15 0 2 2 0 0 19 78.9 21.0
OF 4 20 4 0 0 0 28 71.4 28.6
POF 0 3 12 6 0 0 21 57.1 42.9
PF 0 2 2 4 0 0 8 50.0 50.0
DA 0 0 0 0 16 5 21 76.2 23.8
AP 0 3 2 1 5 24 35 68.6 31.4
Total 19 28 23 13 23 30 136
Producer’s

accuracy (%)
78.9 71.4 52.2 30.8 69.6 80.0 OA 66.9 [58.3–74.6]

Error of
omission (%)

21.0 28.6 47.8 69.2 30.4 20.0 OE 33.1 [25.2–41.0]

(b) 363 modal filtered ML classified land cover
NC 0 0 0 0 2 0 2 100.0
CF 11 1 2 1 0 0 15 73.3 26.7
OF 7 17 5 0 0 1 30 56.7 43.3
POF 0 2 9 5 0 0 16 56.2 43.7
PF 0 0 3 5 0 0 8 62.5 37.5
DA 0 0 0 1 12 1 14 85.7 14.3
AP 1 8 4 1 9 28 51 54.9 45.1
Total 19 28 23 13 23 30 136
Producer’s

accuracy (%)
57.9 60.7 39.1 38.5 52.2 93.3 OA 60.3 [52.1–68.5]

Error of
omission (%)

42.1 39.3 60.9 61.5 47.8 6.7 OE 39.7 [31.5–47.9]

(c) DS classified land cover
NC 0 0 0 0 0 0 0 100.0 0.0
CF 15 0 1 1 0 0 17 88.2 11.8
OF 4 22 2 0 0 1 29 75.7 24.1
POF 0 1 16 3 1 0 21 76.2 23.8
PF 0 2 2 8 0 0 12 66.7 33.3
DA 0 0 0 0 17 6 23 73.9 26.1
AP 0 3 2 1 5 23 34 67.6 32.3
Total 19 28 23 13 23 30 136
Producer’s

accuracy (%)
78.9 78.6 69.6 67.5 73.9 76.7 OA 74.3 [65.9–81.2]

Error of
omission (%)

21.0 21.4 30.4 38.5 26.1 23.3 OE 25.7 [18.4–33.1]

Ninety-five per cent confidence intervals are shown for overall accuracy (OA) and error (OE).
Bold numbers in (b) and (c) indicate an increase in accuracy with regard to the ML
classification.
NC, non-classified; CF, cloud forest; OF, oak forest; POF, pine–oak forest; PF, pine forest;
DA, developed areas; AP, agriculture/pastureland.

1960 L. Cayuela et al.



observation is similar to that mentioned for the case of DEM data. In combination,

DEM and slope do not lead to better results, causing an increase in error in most

forest classes as well as an increase in overall error.

The contrast between results obtained through simple inclusion of DEM and

slope data in the maximum likelihood classification and the inclusion of the same

information when shaped by expert knowledge and combined using the DS method

is apparent when table 4 is considered in its entirety.

The relative importance of different combinations of lines of evidence in

improving classification accuracy can be seen in the lower section of table 4.

When combined separately with multi-spectral data, only landscape perceptions

regarding vegetation types succeeded in reducing total error (by around 4%). The

use of this line of evidence also led to a reduction of errors of omission and

commission for OF, POF and PF and did not increase error for any other individual

class. Evidence regarding altitude slightly increased the error of omission for CF but

decreased its error of commission. Likewise it hardly increased the error of

commission for POF but decreased the error of omission for this class. Evidence

concerning slope decreased the error of commission for CF and the errors of

omission and commission for PF, but increased the error of omission for POF. All

these changes reduced overall error by about 1%. Distance to known human

settlements reduced the error of omission for DA but slightly increased its error of

commission and both the errors of omission and commission for AP. Again, overall

accuracy was not improved.

Increasingly complex combinations of these lines of evidence showed the same

trends, i.e. better performance of Thiessen’s polygons compared with other lines of

Figure 4. Errors of omission, and commission and overall error (%) obtained when using
maximum likelihood (continuous line with diamonds), a modal filtered maximum likelihood
(dotted line with crosses) and Dempster – Shafer (dashed line with circles) classification
procedures. Overall error is shown (right side) with 95% confidence intervals.
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Table 4. Accuracy assessment for: (i) maximum likelihood classifications with and without the addition of environmental variables (digital elevation model
(DEM) and/or slope) (upper section); and (ii) increasingly complex combinations of lines of evidence in addition to reflectance data using DS classifier (lower

section).

Classification
procedure

CF OF POF PF DA AP

Total error KIAO C O C O C O C O C O C

Maximum likelihood (ML) procedures:
ML (6 bands) 21.0 21.0 28.6 28.6 47.8 42.9 69.2 50.0 30.4 23.8 20.0 31.4 33.1 [25.2–41.0] 59.8 [50.4–69.3]
ML (6 bands + DEM) 31.6 0.0 35.7 37.9 78.3 44.4 38.5 52.9 26.1 26.1 46.7 20.0 37.5 [29.4–45.6] 54.2 [44.3–64.0]
ML (6 bands slope) 26.3 6.7 28.6 33.3 47.8 50.0 76.9 57.1 21.7 14.3 13.3 33.3 31.6 [23.8–39.4] 61.2 [51.7–70.7]
ML (6 bands + DEM + slope) 26.3 0.0 32.1 38.7 82.6 42.9 38.5 50.0 30.4 23.8 16.7 46.8 36.8 [28.7–44.9] 55.0 [45.1–64.8]

Dempster–Shafer procedures
Alt 26.3 12.5 28.6 28.6 43.5 45.8 69.2 50.0 30.4 23.8 20.0 31.4 33.1 [25.2–41.0] 59.8 [50.3–69.3]
Sl 21.0 16.7 28.6 28.6 52.2 42.1 53.8 45.4 30.4 23.8 20.0 31.4 32.3 [24.5–40.2] 60.8 [51.4–70.2]
Dist 21.0 21.0 28.6 28.6 47.8 42.9 62.9 50.0 26.1 26.1 23.3 32.3 33.1 [25.2–41.0] 59.8 [50.3–69.3]
Thies 21.0 21.0 21.4 21.4 39.1 30.0 61.5 44.4 30.4 23.8 20.0 31.4 29.4 [21.7–37.1] 64.3 [55.2–73.5]
Alt + Sl 26.3 12.5 28.6 28.6 47.8 42.9 53.8 45.4 30.4 23.8 20.0 31.4 32.3 [24.5–40.2] 60.7 [51.3–70.2]
Alt + Dist 26.3 12.5 28.6 28.6 43.5 45.8 69.2 50.0 26.1 26.1 23.3 32.3 33.1 [25.2–41.0] 59.7 [50.2–69.3]
Alt + Thies 21.0 11.8 21.4 21.4 34.8 28.6 53.8 40.0 30.4 23.8 20.0 31.4 27.9 [20.4–35.5] 66.1 [57.0–75.2]
Sl + Dist 21.0 16.7 28.6 28.6 52.2 42.1 53.8 45.4 26.1 26.1 23.3 32.3 32.3 [24.5–40.2] 60.7 [51.3–70.2]
Sl + Thies 21.0 16.7 21.4 21.4 39.1 22.2 38.5 33.3 30.4 23.8 20.0 31.4 27.2 [19.7–34.7] 67.0 [58.1–76.0]
Dist + Thies 21.0 21.0 21.4 21.4 39.1 30.0 61.5 44.4 26.1 26.1 23.3 32.3 29.4 [21.7–37.1] 64.3 [55.1–73.5]
Alt + Sl + Dist 26.3 12.5 28.6 28.6 47.8 42.9 53.8 45.4 26.1 26.1 23.3 32.3 32.3 [24.5–40.2] 60.7 [51.3–70.2]
Alt + Sl + Thies 21.0 11.8 21.4 24.1 30.4 27.3 38.5 33.3 30.4 23.8 20.0 31.4 25.7 [18.4–33.1]* 68.6 [59.7–77.6]*
Alt + Dist + Thies 21.0 11.8 21.4 21.4 34.8 28.6 53.8 40.0 26.1 26.1 23.3 32.3 27.9 [20.4–35.5] 66.1 [57.0–75.2]
Sl + Dist + Thies 21.0 16.7 21.4 21.4 39.1 22.2 38.5 33.3 26.1 26.1 23.3 32.3 27.2 [19.7–34.7] 67.0 [58.0–76.0]
Alt + Sl + Dist + Thies 21.0 11.8 21.4 24.1 30.4 23.8 38.5 33.3 26.1 26.1 23.3 32.3 25.7 [18.4–33.1]* 68.6 [59.7–77.6]*

Errors of omission (O) and commission (C) are given for each thematic category in addition to total error and kappa index of agreement (KIA) with 95%
confidence intervals. Reductions (bold) and increases (underline) in error are shown in the table for individual classes with regard to maximum likelihood
classification. Combinations of lines of evidence that minimize total error are marked with an asterisk.
CF, cloud forest; OF, oak forest; POF, pine – oak forest; PF, pine forest; DA, developed areas; AP, agriculture/pastureland; Alt, altitude; Sl, slope; Dist,
distance to known human settlements; Thies, Thiessen’s polygons.
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evidence. Furthermore, classification accuracy was considerably improved when all
these lines of evidence were combined. Total error was least when two combinations

of lines of evidence were used: (i) all lines of evidence and (ii) all lines of evidence

except distance to known human settlements. When these were used in combination

with remote sensing data total error was reduced by 7.4%. Differences were found at

the individual class level. When using all lines of evidence, the error of commission

for POF and the error of omission for DA were lower, whereas there was a slightly

increase in the errors of omission and commission for AP compared with that

classification which uses all lines of evidence except distance to known human
settlements. As one of our objectives was the improvement of classification accuracy

for vegetation types, the former result is preferred. The thematic map resulting from

hardening DS classification using all lines of evidence is shown in figure 5. A richer

description of the classification process is given by the underlying belief surfaces and

the uncertainty associated with the classification process (see figure 2). Space

restrictions prevent a full presentation of all belief layers The overall uncertainty

image associated with the results is shown in figure 6. Inspection shows that

uncertainty is greatest on steep slopes and within forest areas where natural
vegetation gradients exist. The pattern of uncertainty is itself fragmented over the

image. The uncertainty image is thus an accurate representation of the inherent

difficulty involved in assigning pixels to land use classes in this extremely complex

and heterogeneous landscape.

3.2 Land cover estimation

From any image classification, the estimated area associated with each type of land

cover can be derived. Land cover estimates for the three main classification

techniques used in this study are reported in table 5. The use of a 363 modal filter

tends to favour the most frequent class at the expense of the least frequent or the

most fragmented ones. AP, with a surface of 24 295 ha estimated from the maximum

likelihood classification, increased its area up to 27 026 ha after applying a 363
modal filter. On the contrary, NC, CF, PF and DA decreased their estimated

Figure 5. Hardened Dempster – Shafer classification using all lines of evidence in addition to
multi-spectral data.
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surface by 755, 239, 640 and 1228 ha, respectively. OF and POF, the most common

categories after AP, showed no quantitative distinction in estimated areas with and

without the use of modal filters.

DS classification reduced uncertainty where multi-spectral data are not sufficient

to assign a pixel to a certain category. Thus, compared with the non-classified 1309

ha estimated in the maximum likelihood classification, we report only 257 ha when

using the DS classifier. Similarly, there was a reduction in estimated cover for CF

and POF of 431 and 1187 ha, respectively. On the contrary, there was an increase in

estimated cover for OF, PF, DA and AP, the largest corresponding to OF with 1210

ha. PF and DA showed an increase of 540 and 553 ha, respectively, compared with

the results from maximum likelihood classification, whereas AP showed the lowest

increase with 365 ha. The relative values of these changes are important. Whereas a

change in the estimated surface of 500 ha only represents 2% for AP, the same

change in the estimated area is equivalent to about 40% for CF.

Figure 6. Overall uncertainty associated with the Dempster – Shafer classification of land
cover.

Table 5. Estimated areas (ha) for different land covers using three different classification
techniques: maximum likelihood (ML), modal filtered maximum likelihood (ML363), and

Dempster–Shafer (DS).

ML ML363 DS

NC 1309 554 257
CF 1824 1585 1393
OF 8572 8782 9782
POF 10593 10513 9406
PF 1886 1246 2426
DA 5680 4452 6233
AP 24 295 27 026 24 660

(NC, non-classified; CF, cloud forest; OF, oak forest; POF, pine–oak forest; PF, pine forest;
DA, developed areas; AP, agriculture and pastureland)

1964 L. Cayuela et al.



4. Discussion

The inclusion of expert knowledge through the DS procedure leads to better

discrimination of some forest classes and thus an improvement in overall accuracy

of classification. DS does not favour the most frequent and the least fragmented
classes, as modal filters do. Differences in estimated surface between maximum

likelihood and DS classification largely depend on the use of evidence derived from

expert knowledge.

4.1 Classification accuracies

Because the decrease of 7.4% in overall error when using DS procedure as compared

with maximum likelihood is within the 95% confidence interval we refer to a

tendency towards DS improving classification with regard to traditional classifiers

rather than a significant improvement. A formal test of significance and associated p

value is not included as we considered the null hypothesis (no difference between

classification methods) to be uninformative in the context of comparing methods of
classification that were assumed a priori to have some effect (Johnson 1999).

Although the effect size measured as a reduction in overall error is not large, we

emphasize that errors of omission and commission for some individual classes, e.g.

PF and POF, were considerably reduced (figure 4). Confusion between categories

occurs mainly within the group of forest and non-forest classes separately, although

there are a few pixels belonging to some forest classes misclassified as AP. CF is

confounded with OF in about 20% of cases. Addition of expert knowledge did not

reduce this error of omission, probably due to lack of direct evidence in favour of
CF. However, errors of commission are reduced when using the DS classifier due to

the use of direct evidence in favour of the hypotheses that are most commonly

confused with CF, e.g. POF and PF. The classes that are more commonly confused

under the maximum likelihood classification are OF, POF and PF. Since training

sites were allocated in sites representing as pure a sample of the training class as

possible, it is reasonable to expect a high spectral separability between these

categories. However, these training classes represent the extremes of a natural

vegetation gradient (González-Espinosa et al. 1991, Galindo-Jaimes et al. 2002) but
do not consider mixed classes along the gradient. Therefore, despite high spectral

separability among training sites, we must assume mixing of forest categories under

certain successional conditions (Kent et al. 1997). Some examples are misclassifica-

tions of disturbed CF with mature OF or POF (see Ramı́rez-Marcial 2001 for a

plant community study in cloud forests) or pine-dominated canopy POF with PF

(e.g. Ramı́rez-Marcial et al. 2001). An additional problem is that complex

topography causes varying spectral responses of land covers, mainly by influencing

sun illumination angles (Helmer et al. 2000).
When performing maximum likelihood classification, accuracy for some

particular classes is quite low but improves when adding consecutive lines of

evidence in support of different hypotheses. Expert knowledge in these cases can

reduce the number of mixed pixels more than traditional remote-sensing-based

classifiers. Environmental variables per se, however, do not necessarily lead to an

improvement in the results, as shown when combining DEM and slope data with

multi-spectral information through the maximum likelihood procedure. However,

once filtered through our experience and visual perception of landscape patterns this
information does help to discriminate between certain categories that are

particularly challenging to traditional methods.
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The varying lines of evidence used in the DS procedure had a different weight in

increasing classification accuracy. Thiessen’s polygons, as representations of

landscape perceptions regarding dominant vegetation types, seemed to have the

largest effect. Thiessen’s polygons have been used in previous works to characterize

landscape patterns (Parresol and McCollum 1997). The use of this line of evidence

reduced errors of omission and commission of the three forest classes that were

supported by this line of evidence. The creation of Thiessen’s polygons is a partially

subjective exercise that can only be attempted if good knowledge of the landscape is

available. We feel that the comparative success of the Thiessen’s polygon approach

in our case can be attributed to very reliable knowledge about the distribution of the

main vegetation types at the landscape level. We also point out that we used

verifiable control points taken in the field; thus this line of evidence can be easily and

objectively evaluated. We also included a comparatively high degree of uncertainty

associated with this line of evidence. This means that giving a high spectral

probability for any pixel to belong to a certain class, the inclusion of this new line of

evidence in support of a different hypothesis is not enough to trigger a shift to a

different class. However, when spectral data provide a similar probability of a pixel

belonging to more than one class, our perception regarding dominant vegetation

types helps to tilt the balance to one particular class and no other. The line of

evidence slope is also important in reducing errors of omission and commission for

PF and the error of commission for CF. Altitude and distance to human settlements

simultaneously reduced one kind of error for some individual classes and increased

other errors for the same or different classes. Overall, they do not modify total error

or accuracy. However, when combined with other lines of evidence they contributed

positively to increasing the accuracy for an individual class as well as the total

accuracy. In general, there is no line of evidence derived from expert knowledge that

worsened our results, and all combined reduced overall error as well as errors of

omission and commission for all individual forest classes. The DS procedure did

increase some individual errors for DA (error of commission) and AP (both types of

error) compared with the maximum likelihood results, but these changes were never

larger than 4% and were always counterbalanced by reductions in error for

individual forest classes.

The way in which the lines of evidence derived from expert knowledge relate to the

probability generated from multi-spectral information is difficult to assess due to the

complexity of the algorithm used. One suggested approach to explore this question is

by running the DS procedure several times using different thresholds for the various

lines of evidence. Unfortunately the algorithm currently used to implement the DS

procedure is computationally intensive. This currently constrains formal sensitivity

analysis. Our observations suggested that probability derived from remote sensing

data is by far the most decisive factor when assigning one pixel to a certain class. There

are two reasons for this. First, as mentioned before, Bayes is a confident classifier.

Thus very weak support for one hypothesis still provides the most probable

classification if no support exists for any other interpretation. Secondly, probabilities

derived from multi-spectral data support individual classes whereas evidence derived

from expert knowledge mostly supports compound hypotheses. As a result the latter

are not as conclusive in assigning a pixel to a certain class as remote-sensing-based

probabilities. This effect, however, is highly desirable because our initial intention was

to use expert knowledge to discriminate categories only in those cases where multi-

spectral information on its own was ambiguous.
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The choice of ancillary variables is obviously of great importance to correctly

discriminate between different thematic classes (Pedroni 2003). We observed from

the confusion matrices that there is no reduction in the error of omission for CF. It

would therefore be convenient to collect more evidence regarding this hypothesis.

Although expert knowledge considerably decreased the errors of omission and

commission in the case of PF, this forest type remained the least well classified of all

classes. Thus, it would also be necessary to either further refine the training sites or

add new lines of evidence to reduce misclassification of this category.

4.2 Land cover estimation

Differences in estimated surfaces from maximum likelihood and DS classification

largely depend on the use of evidence derived from expert knowledge. Some lines of

evidence tended to favour some hypotheses and not others, and this would lead to

an increase in the estimated surface of such classes. However, there is no general

trend (as occurs with the use of modal filters) that automatically favours the most

frequent and least fragmented classes. CF, for example, would be overestimated

when using only spectral data. This is due to the fact that most of the remaining

patches of CF extend over steep slopes, giving this class a closer resemblance to PF.

This occurs despite topographical corrections which can not fully counterbalance

these effects. In consequence, the spectral signature for this class becomes mixed

with PF, which is more prone to be found at lower altitudes. Introducing altitude-

based evidence against CF clearly reduces the estimated surface for this class in what

ground-based experience confirmed to be an accurate manner. It also noticeably

reduced the number of non-classified pixels when adding expert knowledge to

remote sensing data. Estimation of PF increased after the use of DS classification

chiefly at the expense of reducing the extent of POF. These classes follow a natural

gradient and it is difficult to determine — even in the field — whether a certain pixel

belongs to the former or the latter.

4.3 Final remarks

The use of contextual techniques is being increasingly used with success in a number

of different classification problems (Frigessi and Stander 1994, Hubert-Moy et al.

2001, McIver and Friedl 2002). This allows researchers to specify and flexibly

manipulate probability laws over large sets of random variables that interact with

each other on a local basis. In theory the choice of a classification method should be

done according to landscape structure, but in practice analysts often apply the same

classification algorithm to various areas without considering the particular features

of a given landscape (Hubert-Moy et al. 2001). This can lead to a high level of

misclassification and low accuracy. DS classification allows the incorporation of

expert knowledge into the classification procedure in a formal and well-documented

manner, increasing accuracy with regard to traditional classifiers based uniquely

upon remote sensing data. Other techniques, such as inclusion of prior probabilities

into a maximum likelihood classification (Mather 1985, Cibula and Nyquist 1987,

Frigessi and Stander 1994, Maselli et al. 1995, Pedroni 2003), would probably lead

to similar results.

The DS algorithm offers some advantages beyond a tendency to improve

classification accuracy. First, because conflicts of evidence are resolved through

probabilistic reasoning, logical inconsistencies are avoided. This allows greater
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flexibility in the use of evidence. Second, the formalized use of probability to express

uncertainty associated with the information used in the classification procedure

reflects the inevitably dynamic nature of landscapes. Uncertainty associated with the

results (figure 6) is of itself of interest to users of the information. Third, sensibility

analysis can be performed upon estimation of the area of the varying thematic

classes by changing our levels of belief. An example can be found in Cayuela et al.

(2006) for the highly threatened cloud forest in the central Highlands of Chiapas.

Fourth, the classification procedure accepts the natural complexity of fine-grained

mosaic landscapes without smoothing over genuine features. This last point is

particularly important in the context of fragmented tropical forests (Turner and

Corlett 1996).

Despite this tendency of the DS procedure to improve classification compared

with traditional classifiers, it is important to stress that landscape transitions are

rarely sharp. Many boundaries between landscape units must be subjective, as

classification itself is a subjective exercise. These limits must be considered as

guidelines for further assessing and improving the classification techniques (Hubert-

Moy et al. 2001). Although a thematic map is often treated as a definitive depiction

of a single reality by users of the information it contains, it is better regarded as a

model based on our perceptions of reality (Woodcock and Gopal 2000). The overt

use of subjective information helps to make this clear.

5. Conclusions

Under a natural transitional vegetation gradient, it is difficult to distinguish between

different forest classes from satellite imagery alone. DS classification and surface

estimations in thematic maps generated throughout this procedure offer some

advantages over traditional remote-sensing-based classifiers, particularly in complex

and heterogeneous landscapes. Inevitably many difficulties remain, but we found

(i) a decrease in errors of omission and commission for almost all classes and (ii) a

decrease in total error of around 7.5% when compared with traditional classifiers. A

particular advantage of this classification technique over context operators, such as

modal filters, is that it does not either distort landscape patterns or decrease the

amount of information contained in the satellite image. The DS approach led not

only to a more accurate classification but also to a richer description of the inherent

uncertainty surrounding the classification process.

Acknowledgements

We are especially grateful to Mario González-Espinosa and Neptalı́ Ramı́rez-
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